News
David’s secondment at UCL
David visits the Soft Materials and Interfaces lab at ETH Zurich
Raman tweezers for tire and road wear micro- and nanoparticles analysis published in Environmental Science: Nano
R. Gillibert, A. Magazzù, A. Callegari, D. Bronte-Ciriza, A. Foti, M. G. Donato, O. M. Maragò, G. Volpe, M. L. de La Chapelle, F. Lagarde and P. G. Gucciardi.
Environmental Science: Nano (2022) doi: 10.1039/D1EN00553G
Abstract:
Tire and road wear particles (TRWP) are non-exhaust particulate matter generated by road transport means during the mechanical abrasion of tires, brakes and roads. TRWP accumulate on the roadsides and are transported into the aquatic ecosystem during stormwater runoffs. Due to their size (sub-millimetric) and rubber content (elastomers), TRWP are considered microplastics (MPs). While the amount of the MPs polluting the water ecosystem with sizes from ∼5 μm to more than 100 μm is known, the fraction of smaller particles is unknown due to the technological gap in the detection and analysis of <5 μm MPs. Here we show that Raman tweezers, a combination of optical tweezers and Raman spectroscopy, can be used to trap and chemically analyze individual TRWPs in a liquid environment, down to the sub-micrometric scale. Using tire particles mechanically grinded from aged car tires in water solutions, we show that it is possible to optically trap individual sub-micron particles, in a so-called 2D trapping configuration, and acquire their Raman spectrum in few tens of seconds. The analysis is then extended to samples collected from a brake test platform, where we highlight the presence of sub-micrometric agglomerates of rubber and brake debris, thanks to the presence of additional spectral features other than carbon. Our results show the potential of Raman tweezers in environmental pollution analysis and highlight the formation of nanosized TRWP during wear.
Raman Tweezers for Tire and Road Wear Micro- and Nanoparticles Analysis published in Environmental Science: Nano

Raman Tweezers for Tire and Road Wear Micro- and Nanoparticles Analysis
Pietro Giuseppe Gucciardi, Gillibert Raymond, Alessandro Magazzù, Agnese Callegari, David Bronte Ciriza, Foti Antonino, Maria Grazia Donato, Onofrio M. Maragò, Giovanni Volpe, Marc Lamy de La Chapelle & Fabienne Lagarde
Environmental Science: Nano 9, 145 – 161 (2022)
ChemRxiv: https://doi.org/10.33774/chemrxiv-2021-h59n1
doi: https://doi.org/10.1039/D1EN00553G
Tire and Road Wear Particles (TRWP) are non-exhaust particulate matter generated by road transport means during the mechanical abrasion of tires, brakes and roads. TRWP accumulate on the roadsides and are transported into the aquatic ecosystem during stormwater runoffs. Due to their size (sub-millimetric) and rubber content (elastomers), TRWP are considered microplastics (MPs). While the amount of the MPs polluting the water ecosystem with sizes from ~ 5 μm to more than 100 μm is known, the fraction of smaller particles is unknown due to the technological gap in the detection and analysis of < 5 μm MPs. Here we show that Raman Tweezers, a combination of optical tweezers and Raman spectroscopy, can be used to trap and chemically analyze individual TWRPs in a liquid environment, down to the sub-micrometric scale. Using tire particles mechanically grinded from aged car tires in water solutions, we show that it is possible to optically trap individual sub-micron particles, in a so-called 2D trapping configuration, and acquire their Raman spectrum in few tens of seconds. The analysis is then extended to samples collected from a brake test platform, where we highlight the presence of sub-micrometric agglomerates of rubber and brake debris, thanks to the presence of additional spectral features other than carbon. Our results show the potential of Raman Tweezers in environmental pollution analysis and highlight the formation of nanosized TRWP during wear.
Featured in:
University of Gothenburg > News and Events: New technology enables the detection of microplastics from road wear
Phys.org > News > Nanotechnology:New technology enables the detection of microplastics from road wear
Nonsologreen > Green: Le Raman-tweezers per la guerra alle nanoplastiche che inquinano fiumi e mari
Laura Natali and Jesús Domínguez participate in the Ämnets dag at the University of Gothenburg
At the Ämnets dag, different high-school teachers of physics and science were given the chance to attend different workshops dealing with lines of research inside the Physics department. Laura Natali and Jesus Manuel Antunez Dominguez joined the initiative and prepared an introductory class to simulations modelling active matter.
The workshop addressed the basic aspects of active matter and some examples of its relevant applications nowadays. Overall, the focus of the workshop was to bring closer some of the main characteristics of active matter through interactive simulations that give a qualitative idea of active behaviour and the effect of different parameters on it.
Stay tuned for more activities like this!


Chun-Jen Chen attended the “Mobility, self-organization and swimming strategies” school, 18-29 October 2021
The school was focused on three main topics: Swimming into complex environment – micro-swimming, Collective motion, and Machine learning applied to active particles, and covered a wide range of models regarding chemical and biological microswimmers.
The school was organised in lecture sections and project sessions for participants to collaborate in groups, in which PhD students and post-doctoral researchers could develop a research project in one of the three main topics of the school. Chun-Jen was involved in a simulation project on a Vicsek-like model in complex environment which is still ongoing.
Jesús Domínguez’s secondment at the University of Gothenburg
The University of Gothenburg is the academic collaborator of his industrial PhD project at Elvesys (France). During the secondment, he could meet his academic supervisor Dr. Caroline Beck Adiels and the rest of her group, the Biological Physics Lab, but also, the Soft Matter Lab researchers who work closely with them. The secondment served to become familiar with the facilities available at the University and it was a great opportunity to participate in outreach activities and present the progress of his project to establish new collaborations for the research about Active Matter.
Audrey Nsamela presented a poster at MicroTAS 2021 hybrid conference in Palm Springs
The Miniaturized Systems for Chemistry and Life Sciences (or MicroTAS) conference took place this year on October 10-14th in a hybrid configuration, both online and in-person in Palm Springs (USA). This conference unite top researchs groups from all over the world and present the most recent advances in MEMS. Audrey attended the conference online from Paris and presented her poster on the development of a sperm sorting platform including chemotaxis guidance.
Audrey Nsamela and Jesús Domínguez both present a poster at MNF conference in Toulouse
The Micro-Nano-Fluidics meeting took place in Toulouse (France) in September 2021. This conference was organized by a french research group and covered mainly 6 topics: Nanofluidics, Chemical Engineering, Flow-waves interactions, Flow chemistry, Diagnostics and clinics, Organ-on-Chip. Audrey and Jesús attended the 2 days conference and presented their poster. Audrey’s poster was focused on the development of a microfluidic platform for sperm sorting, while Jesús’s poster described his work on microfluidic droplet generation for bacteria encapsulation and biofilm studies. This national conference was a great opportunity for both ESRs to meet other researchers in microfluidics and discuss about applications in Active Matter.
