Presentation by D. Bronte Ciriza at the 19th Electromagnetic and Light Scattering Conference

Comparison between the Geometrical Optics (GO) method and the Neural Network (NN) for the optical forces and torques calculation. The NN improvement in speed and accuracy could help to study the motion of active particles in optical landscapes. Image by D. Bronte Ciriza.
Machine learning to enhance the calculation of optical forces in the geometrical optics approximation
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Maria A. Iatì, Giovanni Volpe, Onofrio M. Maragò
Submitted to: ELS-XIX (2021)
Date: 14 July
Time: 12:50 CEST

Short Abstract:
We show how machine learning can improve the speed and accuracy of the optical force calculations in the geometrical optics approximation

Extended Abstract:
Since the pioneering work by Ashkin in the 1970’s, optical forces have played a fundamental role in fields like biology, nanotechnology, or atomic physics. In all these fields, numerical simulations are of great help for validating theories, for the planning of experiments, and in the interpretation of the results. However, the calculation of the forces is computationally expensive and prohibitively slow for numerical simulations when the forces need to be calculated many times in a sequential way.

Recently, machine learning has been demonstrated to be a promising approach to improve the speed of these calculations and therefore, to expand the applicability of numerical simulations for experimental design and analysis. In this work we show that machine learning can be used to improve not only the speed but also the accuracy of the force calculation in the geometrical optics regime, valid when the particles are significantly bigger than the wavelength of the incident light. This is first demonstrated for the case of a spherical particle with 3 degrees of freedom and later expanded to 9 degrees of freedom by including all the relevant parameters involved in the optical forces calculation. Machine learning is proved as a compact, accurate, and fast approach for optical forces calculation and presents a tool that can be used to study systems that, due to computation limitations, were out of the scope of the traditional ray optics approach.

Presentation by D. Bronte Ciriza at OSA-OMA-2021

Optical forces calculated on a sphere with the geometrical optics (left column) and the machine learning (center column) approaches. The difference between both approaches is shown in the column on the right, illustrating the removal of artefacts with the machine learning method.
Machine learning to enhance the calculation of optical forces in the geometrical optics approximation
David Bronte Ciriza, Alessandro Magazzù, Agnese Callegari, Maria A. Iatì, Giovanni Volpe, Onofrio M. Maragò
Submitted to: OSA-OMA-2021, AF2D.2 Contribution
Date: 16 April
Time: 17:00 CEST

Short Abstract:
We show how machine learning can improve the speed and accuracy of the optical force calculations in the geometrical optics approximation

Extended Abstract:
Light can exert forces by exchanging momentum with particles. Since the pioneering work by Ashkin in the 1970’s, optical forces have played a fundamental role in fields like biology, nanotechnology, or atomic physics. Optical tweezers, which are instruments that, by tightly focusing a laser beam, are capable of confining particles in three dimensions, have become a common tool for manipulation of micro- and nano- particles, as well as a force and torque transducer with sensing capabilities at the femtonewton level. Optical tweezers have also been successfully employed to explore novel phenomena, including protein folding and molecular motors, or the optical forces and Brownian motion of 1D and 2D materials.

Numerical simulations play a fundamental role in the planning of experiments and in the interpretation of the results. In some basic cases for optical tweezers, the optical trap can be approximated by a harmonic potential. However, there are many situations where this approximation is insufficient, for example in the case of a particle escaping an optical trap, or for particles that are moving on an optical landscape but are not trapped. In these cases, a more complex treatment of the light-matter interaction is required for a more accurate calculation of the forces. This calculation is computationally expensive and prohibitively slow for numerical simulations when the forces need to be calculated many times in a sequential way. Recently, machine learning has been demonstrated to be a promising approach to improve the speed of these calculations and therefore, to expand the applicability of numerical simulations for experimental design and analysis.

In this work, we explore the geometrical optics regime, valid when the particles are significantly bigger than the wavelength of the incident light. This is typically the case in experiments with micrometer-size particles. The optical field is described by a collection of N light rays and the momentum exchange between the rays and the particle is calculated employing the tools of geometrical optics. The limitation of considering a discrete N number of light rays introduces artifacts in the force calculation. We show that machine learning can be used to improve not only the speed but also the accuracy of the force calculation. This is first demonstrated by training a neural network for the case of a spherical particle with 3 degrees of freedom accounting for the position of the particle. We show how the neural network improves the prediction of the force with respect to the initial training data that has been generated through the geometrical optics approach.

Starting from these results for 3 degrees of freedom, the work has been expanded to 9 degrees of freedom by including all the relevant parameters for the calculation of the optical forces considering also different refractive indexes, shapes, sizes, positions, and orientations of the particle besides different numerical apertures of the objective that focuses the light.

This work proves machine learning as a compact, accurate, and fast approach for optical forces calculation and presents a tool that can be used to study systems that, due to computation limitations, were out of the scope of the traditional ray optics approach.

Optical tweezers in a dusty universe published in The European Physical Journal Plus

Pictorial representation of space tweezers, space applications of optical tweezers. Interplanetary or planetary dust can be collected and investigated directly in situ (open space or extraterrestrial surfaces). The inset represents a closeup of a grain of interplanetary dust trapped by a single-beam optical tweezers. (Image by Alessandro Magazzù)
Optical tweezers in a dusty universe
P. Polimeno, A. Magazzù, M. A. Iatì, R. Saija, L. Folco, D. Bronte Ciriza, M. G. Donato, A. Foti, P. G. Gucciardi, A. Saidi, C. Cecchi-Pestellini, A. Jimenez Escobar, E. Ammannito, G. Sindoni, I. Bertini, V. Della Corte, L. Inno, A. Ciaravella, A. Rotundi & O. M. Maragò
Eur. Phys. J. Plus 136, 339 (2021)
doi: 10.1140/epjp/s13360-021-01316-z

Abstract:
Optical tweezers are powerful tools based on focused laser beams. They are able to trap, manipulate, and investigate a wide range of microscopic and nanoscopic particles in different media, such as liquids, air, and vacuum. Key applications of this contactless technique have been developed in many fields. Despite this progress, optical trapping applications to planetary exploration are still to be developed. Here we describe how optical tweezers can be used to trap and characterize extraterrestrial particulate matter. In particular, we exploit light scattering theory in the T-matrix formalism to calculate radiation pressure and optical trapping properties of a variety of complex particles of astrophysical interest. Our results open perspectives in the investigation of extraterrestrial particles on our planet, in controlled laboratory experiments, aiming for space tweezers applications: optical tweezers used to trap and characterize dust particles in space or on planetary bodies surface.

David Bronte Ciriza visits the Soft Matter Lab, Gothenburg, Sweden

From the 2nd to the 9th of November 2020, David Bronte Ciriza and Alessandro Magazzù (Post Doc at the CNR-IPCF Messina) have visited the Soft Matter Lab at the University of Gothenburg, Sweden. During their visit, they have been working on a project related to the use of neural networks to improve optical forces calculations. This visit has also served as networking opportunity with the researchers at the Gothenburg University, including the ones that participate in the ActiveMatter network.

Alessandro Magazzù and David Bronte Ciriza in Gothenburg. Foto by Aukut Argun