
David was awarded the best Poster Prize at NanoPlasm 2022

Beyond the programme of the LM the co-location with the EPS Forum, allowed the participants to learn about industrial opportunities and to attend lectures from world-class researchers, including 3 Nobel Laureates. Scientific outreach, cultural exchange, and peaceful international collaboration are more important than ever. Bringing young scientists together and equipping them with tools and skills is a great way of fostering these aspects.
Between the 23rd and the 27th of May 2022 Liam participated in the CECAM workshop on Computational methods and tools for complex suspensions to present some of his work. In his talk titled “Modelling biological matter as active nematic fluids” he highlighted how numerical simulations of active fluids can be used to study the self-organization of three-dimensional tissues in a variety of biological systems, where a continuous influx of energy on a single-cell level drives striking collective behaviour at the tissue scale.
Then, the ESRs briefly described their research in a popular science style, so addressed to a broader public. The first hour concluded with a presentation about rules to keep in mind while communicating both in oral and written form.
Afterwards, a few examples among the written texts were selected and discussed with all the participants. The aim was to exchange feedback and suggestions on how to make the communication more effective. The feedback was the inspiration for everyone to review their communication example, and the final versions are being uploaded on the official twitter account @ActiveMatterITN.
Chun-Jen Chen and Clemens Bechinger
New J. Phys. 24 033001 (2022)
doi: 10.1088/1367-2630/ac5374
repository: KOPS:56911
Many animal species organize within groups to achieve advantages compared to being isolated. Such advantages can be found e.g. in collective responses which are less prone to individual failures or noise and thus provide better group performance. Inspired by social animals, here we demonstrate with a swarm of microrobots made from programmable active colloidal particles (APs) that their escape from a hazardous area can originate from a cooperative group formation. As a consequence, the escape efficiency remains almost unchanged even when half of the APs are not responding to the threat. Our results not only confirm that incomplete or missing individual information in robotic swarms can be compensated by other group members but also suggest strategies to increase the responsiveness and fault-tolerance of robotic swarms when performing tasks in complex environments.
Press release at Universität Konstanz website:
How animal swarms respond to threats: With the help of microrobots, Konstanz physicists decode how swarms of animals respond effectively to danger [in English]
Brownian particles driven by spatially periodic noise
Davide Breoni, Ralf Blossey, Hartmut Löwen
The European Physical Journal E 45, 18 (2022)
arXiv: 2111.10220
DOI:10.1140/epje/s10189-022-00176-4
We discuss the dynamics of a Brownian particle under the influence of a spatially periodic noise strength in one dimension using analytical theory and computer simulations. In the absence of a deterministic force, the Langevin equation can be integrated formally exactly. We determine the short- and long-time behaviour of the mean displacement (MD) and mean-squared displacement (MSD). In particular we find a very slow dynamics for the mean displacement, scaling as t^(-1/2) with time t. Placed under an additional external periodic force near the critical tilt value we compute the stationary current obtained from the corresponding Fokker-Planck equation and identify an essential singularity if the minimum of the noise strength is zero. Finally, in order to further elucidate the effect of the random periodic driving on the diffusion process, we introduce a phase factor in the spatial noise with respect to the external periodic force and identify the value of the phase shift for which the random force exerts its strongest effect on the long-time drift velocity and diffusion coefficient.
Z. Xiao, A. Nsamela, B. Garlan, and J. Simmchen
Angew. Chemie Int. Ed., Feb. 2022
chemRxiv: 10.26434/chemrxiv-2021-sxqm1
DOI: 10.1002/anie.202117768
The ability of artificial microswimmers to respond to external stimuli and the mechanistical details of their origins belong to the most disputed challenges in interdisciplinary science. Therein, the creation of chemical gradients is technically challenging, because they quickly level out due to diffusion. Inspired by pivotal stopped ow experiments in chemical kinetics, we show that microfluidics gradient generation combined with a pressure feedback loop for precisely controlling the stop of the flows, can enable us to study mechanistical details of chemotaxis of artificial Janus micromotors, based on a catalytic reaction. We find that these copper Janus particles display a chemotactic motion along the concentration gradient in both, positive and negative direction and we demonstrate the mechanical reaction of the particles to unbalanced drag forces, explaining this behaviour.
He presented the poster “A microfluidic platform for the study of bacterial biofilms” showing his advances in the development of a droplet-based microfluidic platform for in situ observation of bacterial behavior and biofilms.
The NanoBioTech Conference brings together international researchers in the fields of Micro- and Nanotechnology and its applications in Biology and Medicine.
Apart from the featured talks and presentations on related topics and techniques of interest, Jesus benefited from the direct contact with international researchers, that promoted an exchange of ideas and opens the door for possible future collaborations.