Active Brownian and inertial particles in disordered environments: short-time expansion of the mean-square displacement
Davide Breoni, Michael Schmiedeberg, Hartmut Löwen
arXiv: 2010.11076
We consider an active Brownian particle moving in a disordered two-dimensional energy or motility landscape. The averaged mean-square-displacement (MSD) of the particle is calculated analytically within a systematic short-time expansion. As a result, for overdamped particles, both an external random force field and disorder in the self-propulsion speed induce ballistic behaviour adding to the ballistic regime of an active particle with sharp self-propulsion speed. Spatial correlations in the force and motility landscape contribute only to the cubic and higher order powers in time for the MSD. Finally, for inertial particles two superballistic regimes are found where the scaling exponent of the MSD with time is α = 3 and α = 4. We confirm our theoretical predictions by computer simulations. Moreover they are verifiable in experiments on self-propelled colloids in random environments.